九游会j9备用网址-ag九游会j9官方网站 > 随笔 > 教育随笔

初一数学知识点总结-九游会j9备用网址

散文网 2022-11-28 15:30:44

  初一数学知识点总结1

  第一章 有理数

  (一)正负数

  1.正数:大于0的数。

  2.负数:小于0的数。

  3.正数大于0,负数小于0,正数大于负数。

  注意:0即不是正数,也不是负数;-a不一定是负数, a也不一定是正数;p不是有理数;

  (二)有理数

  1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

  有理数的分类: ① ②

  (三)数轴

  1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

  2.数轴的三要素:原点、正方向、单位长度。

  3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

  相反数的和为0 a b=0 a、b互为相反数.

  4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

  绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2) 绝对值可表示为: 或 ;

  (3) 等于本身的数汇总:

  相反数等于本身的数:0

  倒数等于本身的数:1,-1

  绝对值等于本身的数:正数和0

  平方等于本身的数:0,1

  立方等于本身的数:0,1,-1.

  (四)有理数的加减法

  1.先定符号,再算绝对值。

  2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

  3.加法交换律:a b= b a 两个数相加,交换加数的位置,和不变。

  4.加法结合律:(a b) c = a (b c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  5. a?b = a (?b) 减去一个数,等于加这个数的相反数。

  (五)有理数乘法(先定积的符号,再定积的大小)

  1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  2.乘积是1的两个数互为倒数。

  3.乘法交换律:ab= b a

  4.乘法结合律:(ab)c = a (b c)

  5.乘法分配律:a(b c)= a b ac

  (六)有理数除法

  1.先将除法化成乘法,然后定符号,最后求结果。

  2.除以一个不等于0的数,等于乘这个数的倒数。

  3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

  (七)乘方

  1.求n个相同因数的积的运算,叫做乘方。写作an 。(乘方的结果叫幂,a叫底数,n叫指数)

  2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

  3.同底数幂相乘,底不变,指数相加。

  4.同底数幂相除,底不变,指数相减。

  5据规律 底数的小数点移动一位,平方数的小数点移动二位.

  (八)有理数的加减乘除混合运算法则

  1.先乘方,再乘除,最后加减。

  2.同级运算,从左到右进行。

  3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  (九)科学记数法、近似数、有效数字。

  第二章 整式

  (一)整式

  1.整式:单项式和多项式的统称叫整式。

  2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

  3.系数;一个单项式中,数字因数叫做这个单项式的系数。

  4。次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

  5.多项式:几个单项式的和叫做多项式。

  6.项:组成多项式的每个单项式叫做多项式的项。

  7.常数项:不含字母的项叫做常数项。

  8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。

  9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

  (二)整式加减

  整式加减运算时,如果遇到括号先去括号,再合并同类项。

  1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

  合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

  第三章 一元一次方程

  分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

  一、方程:

  先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。

  (一)一元一次方程。

  1.一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

  2.解:求出的方程中未知数的值叫做方程的解。

  (二)等式的性质

  1.等式两边加(或减)同一个数(或式子),结果仍相等。

  如果a= b,那么a± c= b± c

  2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  如果a= b,那么a c= b c;

  如果a= b,(c?0),那么a ∕c = b ∕ c。

  (三)解方程的步骤

  解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。

  1.去分母:把系数化成整数。

  2.去括号

  3.移项:把等式一边的某项变号后移到另一边。

  4.合并同类项

  5.系数化为1

  列方程解应用题的常用公式:

  (1)行程问题: 路程=速度·时间 ;

  (2)工程问题:工作量=工作效率·工作时间 ;

  工程问题常用等量关系: 先做的 后做的=完成量

  (3)顺水逆水问题:

  顺流速度=静水速度 水流速度,逆流速度=静水速度-水流速度;

  顺水逆水问题常用等量关系: 顺水路程=逆水路程

  (4)商品利润问题: 售价=定价 , ;

  利润问题常用等量关系: 售价-进价=利润

  (5)配套问题:

  (6)分配问题

  第四章 图形认识初步

  一、图形认识初步

  1.几何图形:把从实物中抽象出来的各种图形的统称。

  2.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。

  3.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。

  4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

  5.点,线,面,体

  ①图形是由点,线,面构成的。

  ②线与线相交得点,面与面相交得线。

  ③点动成线,线动成面,面动成体。

  二、直线、线段、射线

  1.线段:线段有两个端点。

  2.射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。

  3.直线:将线段的两端无限延长就形成了直线。直线没有端点。

  4.两点确定一条直线:经过两点有一条直线,并且只有一条直线。

  5.相交:两条直线有一个公共点时,称这两条直线相交。

  6.两条直线相交有一个公共点,这个公共点叫交点。

  7.中点:m点把线段ab分成相等的两条线段am与mb,点m叫做线段ab的中点。

  8.线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)

  9.距离:连接两点间的线段的长度,叫做这两点的距离。

  三、角

  1.角:有公共端点的两条射线组成的图形叫做角。

  2.角的度量单位:度、分、秒。

  3.角的度量与表示:

  ①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

  ②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。

  4.角的比较:

  ①角也可以看成是由一条射线绕着他的端点旋转而成的。

  ②平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。

  ③平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  ④工具:量角器、三角尺、经纬仪。

  5.余角和补角

  ①余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。

  ②补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。

  ③补角的性质:等角的补角相等

  ④余角的性质:等角的余角相等

  初一数学知识点总结2

  正数和负数

  ⒈、正数和负数的概念

  负数:比0小的`数正数:比0大的数0既不是正数,也不是负数

  注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如 a,—a就不能做出简单判断)

  ②正数有时也可以在前面加“ ”,有时“ ”省略不写。所以省略“ ”的正数的符号是正号。

  2、具有相反意义的量

  若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

  零上8℃表示为: 8℃;零下8℃表示为:—8℃

  3、0表示的意义

  (1)0表示“没有”,如教室里有0个人,就是说教室里没有人;

  (2)0是正数和负数的分界线,0既不是正数,也不是负数。如:

  (3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

  有理数

  1、有理数的概念

  (1)正整数、0、负整数统称为整数(0和正整数统称为自然数)

  (2)正分数和负分数统称为分数

  (3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

  理解:只有能化成分数的数才是有理数。

  ①π是无限不循环小数,不能写成分数形式,不是有理数。

  ②有限小数和无限循环小数都可化成分数,都是有理数。

  ③整数也能化成分数,也是有理数

  注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。

  初一数学知识点总结3

  1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。

  2.不等式分类:不等式分为严格不等式与非严格不等式。

  一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。

  3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

  4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

  5.不等式解集的表示方法:

  (1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3

  (2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

  6.解不等式可遵循的一些同解原理

  (1)不等式f(x)< g(x)与不等式 g(x)>f(x)同解。

  (2)如果不等式f(x)< g(x)的定义域被解析式h(x)的定义域所包含,那么不等式 f(x)< g(x)与不等式h(x) f(x)

  (3)如果不等式f(x)< g(x)的定义域被解析式h(x)的定义域所包含,并且h(x)>0,那么不等式f(x)< g(x)与不等式h(x)f(x)0,那么不等式f(x)< g(x)与不等式h(x)f(x)>h(x)g(x)同解。

  7.不等式的性质:

  (1)如果x>y,那么yy;(对称性)

  (2)如果x>y,y>z;那么x>z;(传递性)

  (3)如果x>y,而z为任意实数或整式,那么x z>y z;(加法则)

  (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

  (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

  (6)如果x>y,m>n,那么x m>y n(充分不必要条件)

  (7)如果x>y>0,m>n>0,那么xm>yn

  (8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)

  初一下册数学知识点

  1.数据的整理:我们利用划记法整理数据,如下图所示,

  2.数据的描述:为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据。如下图所示:

  3.全面调查:考察全体对象的调查方式叫做全面调查。

  4.抽样调查:抽样调查是,一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。

  5.抽样调查分类:根据抽选样本的方法,抽样调查可以分为概率抽样和非概率抽样两类。

  概率抽样是按照概率论和数理统计的原理从调查研究的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征作出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。习惯上将概率抽样称为抽样调查。

  6.总体:要考察的全体对象称为总体。

  7.个体:组成总体的每一个考察对象称为个体。

  8.样本:被抽取的所有个体组成一个样本。为了使样本能够正确反映总体情况,对总体要有明确的规定;总体内所有观察单位必须是同质的;在抽取样本的过程中,必须遵守随机化原则;样本的观察单位还要有足够的数量。又称“子样”。按照一定的抽样规则从总体中取出的一部分个体。

  9.样本容量:样本中个体的数目称为样本容量。

  10.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。也称次数。在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。

  如有一组测量数据,数据的总个数n=148最小的测量值xmin=0.03,的测量值xmax=31.67,按组距为△x=3.000将148个数据分为11组,其中分布在15.05~18.05范围内的数据有26个,则称该数据组的频数为26.

  11.频率:频数与数据总数的比为频率。在相同的条件下,进行了n次试验,在这n次试验中,事件a发生的次数n(a)称为事件a发生的频数。比值n(a)/n称为事件a发生的频率,并记为fn(a).用文字表示定义为:每个对象出现的次数与总次数的比值是频率。

  (1)当重复试验的次数n逐渐增大时,频率fn(a)呈现出稳定性,逐渐稳定于某个常数,这个常数就是事件a的概率.这种“频率稳定性”也就是通常所说的统计规律性。

  (2)频率不等同于概率.由伯努利大数定理,当n趋向于无穷大的时候,频率fn(a)在一定意义下接近于概率p(a).频率公式:频数总体数量=频率

  12.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

  初一数学方法技巧

  1.请概括的说一下学习的方法

  曰:“像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。

  2.请谈谈超前学习的好处

  曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。”

  其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。

  再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。

  最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。

  3.请谈谈联想与总结

  曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。

  4.那么我们怎样预习呢?

  曰:“先说说学习的目标:

  (1)知道知识产生的背景,弄清知识形成的过程。

  (2)或早或晚的知道知识的地位和作用:

  (3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。

  再说具体的做法:

  (1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。

  (2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。

  (3)对于例题及习题的处理见上面的。


猜你喜欢

大写数字壹贰叁肆到拾怎么写
大写数字壹贰叁肆到拾怎么写
颁奖典礼背景音乐20首推荐
颁奖典礼背景音乐20首推荐
大写一二三四五六七八大九十大写是怎么写的呢?(大写对照表)
大写一二三四五六七八大九十大写是怎么写的呢?(大写对照表)
网站地图